Metamath Proof Explorer


Theorem supiccub

Description: The supremum of a bounded set of real numbers is an upper bound. (Contributed by Thierry Arnoux, 20-May-2019)

Ref Expression
Hypotheses supicc.1 φ B
supicc.2 φ C
supicc.3 φ A B C
supicc.4 φ A
supiccub.1 φ D A
Assertion supiccub φ D sup A <

Proof

Step Hyp Ref Expression
1 supicc.1 φ B
2 supicc.2 φ C
3 supicc.3 φ A B C
4 supicc.4 φ A
5 supiccub.1 φ D A
6 iccssre B C B C
7 1 2 6 syl2anc φ B C
8 3 7 sstrd φ A
9 1 adantr φ x A B
10 9 rexrd φ x A B *
11 2 adantr φ x A C
12 11 rexrd φ x A C *
13 3 sselda φ x A x B C
14 iccleub B * C * x B C x C
15 10 12 13 14 syl3anc φ x A x C
16 15 ralrimiva φ x A x C
17 brralrspcev C x A x C y x A x y
18 2 16 17 syl2anc φ y x A x y
19 8 4 18 5 suprubd φ D sup A <