Metamath Proof Explorer


Theorem supiso

Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypotheses supiso.1 φ F Isom R , S A B
supiso.2 φ C A
supisoex.3 φ x A y C ¬ x R y y A y R x z C y R z
supiso.4 φ R Or A
Assertion supiso φ sup F C B S = F sup C A R

Proof

Step Hyp Ref Expression
1 supiso.1 φ F Isom R , S A B
2 supiso.2 φ C A
3 supisoex.3 φ x A y C ¬ x R y y A y R x z C y R z
4 supiso.4 φ R Or A
5 isoso F Isom R , S A B R Or A S Or B
6 1 5 syl φ R Or A S Or B
7 4 6 mpbid φ S Or B
8 isof1o F Isom R , S A B F : A 1-1 onto B
9 f1of F : A 1-1 onto B F : A B
10 1 8 9 3syl φ F : A B
11 4 3 supcl φ sup C A R A
12 10 11 ffvelrnd φ F sup C A R B
13 4 3 supub φ u C ¬ sup C A R R u
14 13 ralrimiv φ u C ¬ sup C A R R u
15 4 3 suplub φ u A u R sup C A R z C u R z
16 15 expd φ u A u R sup C A R z C u R z
17 16 ralrimiv φ u A u R sup C A R z C u R z
18 1 2 supisolem φ sup C A R A u C ¬ sup C A R R u u A u R sup C A R z C u R z w F C ¬ F sup C A R S w w B w S F sup C A R v F C w S v
19 11 18 mpdan φ u C ¬ sup C A R R u u A u R sup C A R z C u R z w F C ¬ F sup C A R S w w B w S F sup C A R v F C w S v
20 14 17 19 mpbi2and φ w F C ¬ F sup C A R S w w B w S F sup C A R v F C w S v
21 20 simpld φ w F C ¬ F sup C A R S w
22 21 r19.21bi φ w F C ¬ F sup C A R S w
23 20 simprd φ w B w S F sup C A R v F C w S v
24 23 r19.21bi φ w B w S F sup C A R v F C w S v
25 24 impr φ w B w S F sup C A R v F C w S v
26 7 12 22 25 eqsupd φ sup F C B S = F sup C A R