Description: Lemma for supiso . (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supiso.1 | |
|
| supiso.2 | |
||
| Assertion | supisolem | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supiso.1 | |
|
| 2 | supiso.2 | |
|
| 3 | 1 2 | jca | |
| 4 | simpll | |
|
| 5 | 4 | adantr | |
| 6 | simplr | |
|
| 7 | simplr | |
|
| 8 | 7 | sselda | |
| 9 | isorel | |
|
| 10 | 5 6 8 9 | syl12anc | |
| 11 | 10 | notbid | |
| 12 | 11 | ralbidva | |
| 13 | isof1o | |
|
| 14 | 4 13 | syl | |
| 15 | f1ofn | |
|
| 16 | 14 15 | syl | |
| 17 | breq2 | |
|
| 18 | 17 | notbid | |
| 19 | 18 | ralima | |
| 20 | 16 7 19 | syl2anc | |
| 21 | 12 20 | bitr4d | |
| 22 | 4 | adantr | |
| 23 | simpr | |
|
| 24 | simplr | |
|
| 25 | isorel | |
|
| 26 | 22 23 24 25 | syl12anc | |
| 27 | 22 | adantr | |
| 28 | simplr | |
|
| 29 | 7 | adantr | |
| 30 | 29 | sselda | |
| 31 | isorel | |
|
| 32 | 27 28 30 31 | syl12anc | |
| 33 | 32 | rexbidva | |
| 34 | 16 | adantr | |
| 35 | breq2 | |
|
| 36 | 35 | rexima | |
| 37 | 34 29 36 | syl2anc | |
| 38 | 33 37 | bitr4d | |
| 39 | 26 38 | imbi12d | |
| 40 | 39 | ralbidva | |
| 41 | f1ofo | |
|
| 42 | breq1 | |
|
| 43 | breq1 | |
|
| 44 | 43 | rexbidv | |
| 45 | 42 44 | imbi12d | |
| 46 | 45 | cbvfo | |
| 47 | 14 41 46 | 3syl | |
| 48 | 40 47 | bitrd | |
| 49 | 21 48 | anbi12d | |
| 50 | 3 49 | sylan | |