| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supmo.1 |
|
| 2 |
|
supcl.2 |
|
| 3 |
|
suplub2.3 |
|
| 4 |
1 2
|
suplub |
|
| 5 |
4
|
expdimp |
|
| 6 |
|
breq2 |
|
| 7 |
6
|
cbvrexvw |
|
| 8 |
|
breq2 |
|
| 9 |
8
|
biimprd |
|
| 10 |
9
|
a1i |
|
| 11 |
1
|
ad2antrr |
|
| 12 |
|
simplr |
|
| 13 |
3
|
adantr |
|
| 14 |
13
|
sselda |
|
| 15 |
1 2
|
supcl |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
sotr |
|
| 18 |
11 12 14 16 17
|
syl13anc |
|
| 19 |
18
|
expcomd |
|
| 20 |
1 2
|
supub |
|
| 21 |
20
|
adantr |
|
| 22 |
21
|
imp |
|
| 23 |
|
sotric |
|
| 24 |
11 16 14 23
|
syl12anc |
|
| 25 |
24
|
con2bid |
|
| 26 |
22 25
|
mpbird |
|
| 27 |
10 19 26
|
mpjaod |
|
| 28 |
27
|
rexlimdva |
|
| 29 |
7 28
|
biimtrid |
|
| 30 |
5 29
|
impbid |
|