Metamath Proof Explorer


Theorem supmax

Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008) (Proof shortened by OpenAI, 30-Mar-2020)

Ref Expression
Hypotheses supmax.1 φ R Or A
supmax.2 φ C A
supmax.3 φ C B
supmax.4 φ y B ¬ C R y
Assertion supmax φ sup B A R = C

Proof

Step Hyp Ref Expression
1 supmax.1 φ R Or A
2 supmax.2 φ C A
3 supmax.3 φ C B
4 supmax.4 φ y B ¬ C R y
5 simprr φ y A y R C y R C
6 breq2 z = C y R z y R C
7 6 rspcev C B y R C z B y R z
8 3 5 7 syl2an2r φ y A y R C z B y R z
9 1 2 4 8 eqsupd φ sup B A R = C