Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008) (Proof shortened by OpenAI, 30-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supmax.1 | ||
supmax.2 | |||
supmax.3 | |||
supmax.4 | |||
Assertion | supmax |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmax.1 | ||
2 | supmax.2 | ||
3 | supmax.3 | ||
4 | supmax.4 | ||
5 | simprr | ||
6 | breq2 | ||
7 | 6 | rspcev | |
8 | 3 5 7 | syl2an2r | |
9 | 1 2 4 8 | eqsupd |