Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008) (Proof shortened by OpenAI, 30-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmax.1 | ||
| supmax.2 | |||
| supmax.3 | |||
| supmax.4 | |||
| Assertion | supmax |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmax.1 | ||
| 2 | supmax.2 | ||
| 3 | supmax.3 | ||
| 4 | supmax.4 | ||
| 5 | simprr | ||
| 6 | breq2 | ||
| 7 | 6 | rspcev | |
| 8 | 3 5 7 | syl2an2r | |
| 9 | 1 2 4 8 | eqsupd |