Metamath Proof Explorer


Theorem supminf

Description: The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011) ( Revised by AV, 13-Sep-2020.)

Ref Expression
Assertion supminf A A x y A y x sup A < = sup z | z A <

Proof

Step Hyp Ref Expression
1 ssrab2 z | z A
2 negn0 A A z | z A
3 ublbneg x y A y x x y z | z A x y
4 infrenegsup z | z A z | z A x y z | z A x y sup z | z A < = sup w | w z | z A <
5 1 2 3 4 mp3an3an A A x y A y x sup z | z A < = sup w | w z | z A <
6 5 3impa A A x y A y x sup z | z A < = sup w | w z | z A <
7 elrabi x w | w z | z A x
8 7 adantl A x w | w z | z A x
9 ssel2 A x A x
10 negeq w = x w = x
11 10 eleq1d w = x w z | z A x z | z A
12 11 elrab3 x x w | w z | z A x z | z A
13 renegcl x x
14 negeq z = x z = x
15 14 eleq1d z = x z A x A
16 15 elrab3 x x z | z A x A
17 13 16 syl x x z | z A x A
18 recn x x
19 18 negnegd x x = x
20 19 eleq1d x x A x A
21 12 17 20 3bitrd x x w | w z | z A x A
22 21 adantl A x x w | w z | z A x A
23 8 9 22 eqrdav A w | w z | z A = A
24 23 supeq1d A sup w | w z | z A < = sup A <
25 24 3ad2ant1 A A x y A y x sup w | w z | z A < = sup A <
26 25 negeqd A A x y A y x sup w | w z | z A < = sup A <
27 6 26 eqtrd A A x y A y x sup z | z A < = sup A <
28 infrecl z | z A z | z A x y z | z A x y sup z | z A <
29 1 2 3 28 mp3an3an A A x y A y x sup z | z A <
30 29 3impa A A x y A y x sup z | z A <
31 suprcl A A x y A y x sup A <
32 recn sup z | z A < sup z | z A <
33 recn sup A < sup A <
34 negcon2 sup z | z A < sup A < sup z | z A < = sup A < sup A < = sup z | z A <
35 32 33 34 syl2an sup z | z A < sup A < sup z | z A < = sup A < sup A < = sup z | z A <
36 30 31 35 syl2anc A A x y A y x sup z | z A < = sup A < sup A < = sup z | z A <
37 27 36 mpbid A A x y A y x sup A < = sup z | z A <