Step |
Hyp |
Ref |
Expression |
1 |
|
supminfrnmpt.x |
|
2 |
|
supminfrnmpt.a |
|
3 |
|
supminfrnmpt.b |
|
4 |
|
supminfrnmpt.y |
|
5 |
|
eqid |
|
6 |
1 5 3
|
rnmptssd |
|
7 |
1 3 5 2
|
rnmptn0 |
|
8 |
1 4
|
rnmptbdd |
|
9 |
|
supminf |
|
10 |
6 7 8 9
|
syl3anc |
|
11 |
|
eqid |
|
12 |
|
simpr |
|
13 |
|
renegcl |
|
14 |
5
|
elrnmpt |
|
15 |
13 14
|
syl |
|
16 |
15
|
adantr |
|
17 |
12 16
|
mpbid |
|
18 |
17
|
adantll |
|
19 |
|
nfv |
|
20 |
1 19
|
nfan |
|
21 |
|
negeq |
|
22 |
21
|
eqcomd |
|
23 |
22
|
adantl |
|
24 |
|
recn |
|
25 |
24
|
negnegd |
|
26 |
25
|
adantr |
|
27 |
23 26
|
eqtr2d |
|
28 |
27
|
ex |
|
29 |
28
|
adantl |
|
30 |
29
|
adantr |
|
31 |
|
negeq |
|
32 |
31
|
adantl |
|
33 |
3
|
recnd |
|
34 |
33
|
negnegd |
|
35 |
34
|
adantr |
|
36 |
32 35
|
eqtrd |
|
37 |
36
|
ex |
|
38 |
37
|
adantlr |
|
39 |
30 38
|
impbid |
|
40 |
20 39
|
rexbida |
|
41 |
40
|
adantr |
|
42 |
18 41
|
mpbid |
|
43 |
|
simplr |
|
44 |
11 42 43
|
elrnmptd |
|
45 |
44
|
ex |
|
46 |
45
|
ralrimiva |
|
47 |
|
rabss |
|
48 |
46 47
|
sylibr |
|
49 |
|
nfcv |
|
50 |
|
nfmpt1 |
|
51 |
50
|
nfrn |
|
52 |
49 51
|
nfel |
|
53 |
|
nfcv |
|
54 |
52 53
|
nfrabw |
|
55 |
31
|
eleq1d |
|
56 |
3
|
renegcld |
|
57 |
|
simpr |
|
58 |
5
|
elrnmpt1 |
|
59 |
57 3 58
|
syl2anc |
|
60 |
34 59
|
eqeltrd |
|
61 |
55 56 60
|
elrabd |
|
62 |
1 54 11 61
|
rnmptssdf |
|
63 |
48 62
|
eqssd |
|
64 |
63
|
infeq1d |
|
65 |
64
|
negeqd |
|
66 |
10 65
|
eqtrd |
|