Metamath Proof Explorer


Theorem supminfrnmpt

Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses supminfrnmpt.x x φ
supminfrnmpt.a φ A
supminfrnmpt.b φ x A B
supminfrnmpt.y φ y x A B y
Assertion supminfrnmpt φ sup ran x A B < = sup ran x A B <

Proof

Step Hyp Ref Expression
1 supminfrnmpt.x x φ
2 supminfrnmpt.a φ A
3 supminfrnmpt.b φ x A B
4 supminfrnmpt.y φ y x A B y
5 eqid x A B = x A B
6 1 5 3 rnmptssd φ ran x A B
7 1 3 5 2 rnmptn0 φ ran x A B
8 1 3 rnmptbd φ y x A B y y z ran x A B z y
9 4 8 mpbid φ y z ran x A B z y
10 supminf ran x A B ran x A B y z ran x A B z y sup ran x A B < = sup w | w ran x A B <
11 6 7 9 10 syl3anc φ sup ran x A B < = sup w | w ran x A B <
12 eqid x A B = x A B
13 simpr w w ran x A B w ran x A B
14 renegcl w w
15 5 elrnmpt w w ran x A B x A w = B
16 14 15 syl w w ran x A B x A w = B
17 16 adantr w w ran x A B w ran x A B x A w = B
18 13 17 mpbid w w ran x A B x A w = B
19 18 adantll φ w w ran x A B x A w = B
20 nfv x w
21 1 20 nfan x φ w
22 negeq w = B w = B
23 22 eqcomd w = B B = w
24 23 adantl w w = B B = w
25 recn w w
26 25 negnegd w w = w
27 26 adantr w w = B w = w
28 24 27 eqtr2d w w = B w = B
29 28 ex w w = B w = B
30 29 adantl φ w w = B w = B
31 30 adantr φ w x A w = B w = B
32 negeq w = B w = B
33 32 adantl φ x A w = B w = B
34 3 recnd φ x A B
35 34 negnegd φ x A B = B
36 35 adantr φ x A w = B B = B
37 33 36 eqtrd φ x A w = B w = B
38 37 ex φ x A w = B w = B
39 38 adantlr φ w x A w = B w = B
40 31 39 impbid φ w x A w = B w = B
41 21 40 rexbida φ w x A w = B x A w = B
42 41 adantr φ w w ran x A B x A w = B x A w = B
43 19 42 mpbid φ w w ran x A B x A w = B
44 simplr φ w w ran x A B w
45 12 43 44 elrnmptd φ w w ran x A B w ran x A B
46 45 ex φ w w ran x A B w ran x A B
47 46 ralrimiva φ w w ran x A B w ran x A B
48 rabss w | w ran x A B ran x A B w w ran x A B w ran x A B
49 47 48 sylibr φ w | w ran x A B ran x A B
50 nfcv _ x w
51 nfmpt1 _ x x A B
52 51 nfrn _ x ran x A B
53 50 52 nfel x w ran x A B
54 nfcv _ x
55 53 54 nfrabw _ x w | w ran x A B
56 32 eleq1d w = B w ran x A B B ran x A B
57 3 renegcld φ x A B
58 simpr φ x A x A
59 5 elrnmpt1 x A B B ran x A B
60 58 3 59 syl2anc φ x A B ran x A B
61 35 60 eqeltrd φ x A B ran x A B
62 56 57 61 elrabd φ x A B w | w ran x A B
63 1 55 12 62 rnmptssdf φ ran x A B w | w ran x A B
64 49 63 eqssd φ w | w ran x A B = ran x A B
65 64 infeq1d φ sup w | w ran x A B < = sup ran x A B <
66 65 negeqd φ sup w | w ran x A B < = sup ran x A B <
67 11 66 eqtrd φ sup ran x A B < = sup ran x A B <