Metamath Proof Explorer


Theorem supminfxrrnmpt

Description: The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses supminfxrrnmpt.x x φ
supminfxrrnmpt.b φ x A B *
Assertion supminfxrrnmpt φ sup ran x A B * < = sup ran x A B * <

Proof

Step Hyp Ref Expression
1 supminfxrrnmpt.x x φ
2 supminfxrrnmpt.b φ x A B *
3 eqid x A B = x A B
4 1 3 2 rnmptssd φ ran x A B *
5 4 supminfxr2 φ sup ran x A B * < = sup y * | y ran x A B * <
6 xnegex y V
7 3 elrnmpt y V y ran x A B x A y = B
8 6 7 ax-mp y ran x A B x A y = B
9 8 biimpi y ran x A B x A y = B
10 eqid x A B = x A B
11 xnegneg y * y = y
12 11 eqcomd y * y = y
13 12 adantr y * y = B y = y
14 xnegeq y = B y = B
15 14 adantl y * y = B y = B
16 13 15 eqtrd y * y = B y = B
17 16 ex y * y = B y = B
18 17 reximdv y * x A y = B x A y = B
19 18 imp y * x A y = B x A y = B
20 simpl y * x A y = B y *
21 10 19 20 elrnmptd y * x A y = B y ran x A B
22 9 21 sylan2 y * y ran x A B y ran x A B
23 22 ex y * y ran x A B y ran x A B
24 23 rgen y * y ran x A B y ran x A B
25 rabss y * | y ran x A B ran x A B y * y ran x A B y ran x A B
26 25 biimpri y * y ran x A B y ran x A B y * | y ran x A B ran x A B
27 24 26 ax-mp y * | y ran x A B ran x A B
28 27 a1i φ y * | y ran x A B ran x A B
29 nfcv _ x y
30 nfmpt1 _ x x A B
31 30 nfrn _ x ran x A B
32 29 31 nfel x y ran x A B
33 nfcv _ x *
34 32 33 nfrabw _ x y * | y ran x A B
35 xnegeq y = B y = B
36 35 eleq1d y = B y ran x A B B ran x A B
37 2 xnegcld φ x A B *
38 xnegneg B * B = B
39 2 38 syl φ x A B = B
40 simpr φ x A x A
41 3 40 2 elrnmpt1d φ x A B ran x A B
42 39 41 eqeltrd φ x A B ran x A B
43 36 37 42 elrabd φ x A B y * | y ran x A B
44 1 34 10 43 rnmptssdf φ ran x A B y * | y ran x A B
45 28 44 eqssd φ y * | y ran x A B = ran x A B
46 45 infeq1d φ sup y * | y ran x A B * < = sup ran x A B * <
47 46 xnegeqd φ sup y * | y ran x A B * < = sup ran x A B * <
48 5 47 eqtrd φ sup ran x A B * < = sup ran x A B * <