Step |
Hyp |
Ref |
Expression |
1 |
|
supmul1.1 |
|
2 |
|
supmul1.2 |
|
3 |
|
vex |
|
4 |
|
oveq2 |
|
5 |
4
|
eqeq2d |
|
6 |
5
|
cbvrexvw |
|
7 |
|
eqeq1 |
|
8 |
7
|
rexbidv |
|
9 |
6 8
|
syl5bb |
|
10 |
3 9 1
|
elab2 |
|
11 |
|
simpr |
|
12 |
2 11
|
sylbi |
|
13 |
12
|
simp1d |
|
14 |
13
|
sselda |
|
15 |
|
suprcl |
|
16 |
12 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
|
simpl1 |
|
19 |
2 18
|
sylbi |
|
20 |
|
simpl2 |
|
21 |
2 20
|
sylbi |
|
22 |
19 21
|
jca |
|
23 |
22
|
adantr |
|
24 |
|
suprub |
|
25 |
12 24
|
sylan |
|
26 |
|
lemul2a |
|
27 |
14 17 23 25 26
|
syl31anc |
|
28 |
|
breq1 |
|
29 |
27 28
|
syl5ibrcom |
|
30 |
29
|
rexlimdva |
|
31 |
10 30
|
syl5bi |
|
32 |
31
|
ralrimiv |
|
33 |
19
|
adantr |
|
34 |
33 14
|
remulcld |
|
35 |
|
eleq1a |
|
36 |
34 35
|
syl |
|
37 |
36
|
rexlimdva |
|
38 |
10 37
|
syl5bi |
|
39 |
38
|
ssrdv |
|
40 |
|
simpr2 |
|
41 |
2 40
|
sylbi |
|
42 |
|
ovex |
|
43 |
42
|
isseti |
|
44 |
43
|
rgenw |
|
45 |
|
r19.2z |
|
46 |
41 44 45
|
sylancl |
|
47 |
10
|
exbii |
|
48 |
|
n0 |
|
49 |
|
rexcom4 |
|
50 |
47 48 49
|
3bitr4i |
|
51 |
46 50
|
sylibr |
|
52 |
19 16
|
remulcld |
|
53 |
|
brralrspcev |
|
54 |
52 32 53
|
syl2anc |
|
55 |
39 51 54
|
3jca |
|
56 |
|
suprleub |
|
57 |
55 52 56
|
syl2anc |
|
58 |
32 57
|
mpbird |
|
59 |
|
simpr |
|
60 |
|
suprcl |
|
61 |
55 60
|
syl |
|
62 |
61
|
adantr |
|
63 |
16
|
adantr |
|
64 |
19
|
adantr |
|
65 |
|
n0 |
|
66 |
|
0red |
|
67 |
|
simpl3 |
|
68 |
2 67
|
sylbi |
|
69 |
|
breq2 |
|
70 |
69
|
rspccva |
|
71 |
68 70
|
sylan |
|
72 |
66 14 17 71 25
|
letrd |
|
73 |
72
|
ex |
|
74 |
73
|
exlimdv |
|
75 |
65 74
|
syl5bi |
|
76 |
41 75
|
mpd |
|
77 |
76
|
adantr |
|
78 |
|
0red |
|
79 |
38
|
imp |
|
80 |
61
|
adantr |
|
81 |
21
|
adantr |
|
82 |
33 14 81 71
|
mulge0d |
|
83 |
|
breq2 |
|
84 |
82 83
|
syl5ibrcom |
|
85 |
84
|
rexlimdva |
|
86 |
10 85
|
syl5bi |
|
87 |
86
|
imp |
|
88 |
|
suprub |
|
89 |
55 88
|
sylan |
|
90 |
78 79 80 87 89
|
letrd |
|
91 |
90
|
ex |
|
92 |
91
|
exlimdv |
|
93 |
48 92
|
syl5bi |
|
94 |
51 93
|
mpd |
|
95 |
94
|
anim1i |
|
96 |
|
0red |
|
97 |
|
lelttr |
|
98 |
96 61 52 97
|
syl3anc |
|
99 |
98
|
adantr |
|
100 |
95 99
|
mpd |
|
101 |
|
prodgt02 |
|
102 |
64 63 77 100 101
|
syl22anc |
|
103 |
|
ltdivmul |
|
104 |
62 63 64 102 103
|
syl112anc |
|
105 |
59 104
|
mpbird |
|
106 |
12
|
adantr |
|
107 |
102
|
gt0ne0d |
|
108 |
62 64 107
|
redivcld |
|
109 |
|
suprlub |
|
110 |
106 108 109
|
syl2anc |
|
111 |
105 110
|
mpbid |
|
112 |
34
|
adantlr |
|
113 |
61
|
ad2antrr |
|
114 |
|
rspe |
|
115 |
114 10
|
sylibr |
|
116 |
115
|
adantl |
|
117 |
|
simplrr |
|
118 |
89
|
adantlr |
|
119 |
117 118
|
eqbrtrrd |
|
120 |
116 119
|
mpdan |
|
121 |
120
|
expr |
|
122 |
121
|
exlimdv |
|
123 |
43 122
|
mpi |
|
124 |
123
|
adantlr |
|
125 |
112 113 124
|
lensymd |
|
126 |
14
|
adantlr |
|
127 |
19
|
ad2antrr |
|
128 |
102
|
adantr |
|
129 |
|
ltdivmul |
|
130 |
113 126 127 128 129
|
syl112anc |
|
131 |
125 130
|
mtbird |
|
132 |
131
|
nrexdv |
|
133 |
111 132
|
pm2.65da |
|
134 |
58 133
|
jca |
|
135 |
61 52
|
eqleltd |
|
136 |
134 135
|
mpbird |
|
137 |
136
|
eqcomd |
|