Step |
Hyp |
Ref |
Expression |
1 |
|
supmul.1 |
|
2 |
|
supmul.2 |
|
3 |
|
vex |
|
4 |
|
oveq1 |
|
5 |
4
|
eqeq2d |
|
6 |
5
|
rexbidv |
|
7 |
6
|
cbvrexvw |
|
8 |
|
eqeq1 |
|
9 |
8
|
2rexbidv |
|
10 |
7 9
|
syl5bb |
|
11 |
3 10 1
|
elab2 |
|
12 |
2
|
simp2bi |
|
13 |
12
|
simp1d |
|
14 |
13
|
sselda |
|
15 |
14
|
adantrr |
|
16 |
|
suprcl |
|
17 |
12 16
|
syl |
|
18 |
17
|
adantr |
|
19 |
2
|
simp3bi |
|
20 |
19
|
simp1d |
|
21 |
20
|
sselda |
|
22 |
21
|
adantrl |
|
23 |
|
suprcl |
|
24 |
19 23
|
syl |
|
25 |
24
|
adantr |
|
26 |
|
simp1l |
|
27 |
2 26
|
sylbi |
|
28 |
|
breq2 |
|
29 |
28
|
rspccv |
|
30 |
27 29
|
syl |
|
31 |
30
|
imp |
|
32 |
31
|
adantrr |
|
33 |
|
simp1r |
|
34 |
2 33
|
sylbi |
|
35 |
|
breq2 |
|
36 |
35
|
rspccv |
|
37 |
34 36
|
syl |
|
38 |
37
|
imp |
|
39 |
38
|
adantrl |
|
40 |
|
suprub |
|
41 |
12 40
|
sylan |
|
42 |
41
|
adantrr |
|
43 |
|
suprub |
|
44 |
19 43
|
sylan |
|
45 |
44
|
adantrl |
|
46 |
15 18 22 25 32 39 42 45
|
lemul12ad |
|
47 |
46
|
ex |
|
48 |
|
breq1 |
|
49 |
48
|
biimprcd |
|
50 |
47 49
|
syl6 |
|
51 |
50
|
rexlimdvv |
|
52 |
11 51
|
syl5bi |
|
53 |
52
|
ralrimiv |
|