Metamath Proof Explorer


Theorem supmullem2

Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)

Ref Expression
Hypotheses supmul.1 C = z | v A b B z = v b
supmul.2 φ x A 0 x x B 0 x A A x y A y x B B x y B y x
Assertion supmullem2 φ C C x w C w x

Proof

Step Hyp Ref Expression
1 supmul.1 C = z | v A b B z = v b
2 supmul.2 φ x A 0 x x B 0 x A A x y A y x B B x y B y x
3 vex w V
4 oveq1 v = a v b = a b
5 4 eqeq2d v = a z = v b z = a b
6 5 rexbidv v = a b B z = v b b B z = a b
7 6 cbvrexvw v A b B z = v b a A b B z = a b
8 eqeq1 z = w z = a b w = a b
9 8 2rexbidv z = w a A b B z = a b a A b B w = a b
10 7 9 syl5bb z = w v A b B z = v b a A b B w = a b
11 3 10 1 elab2 w C a A b B w = a b
12 2 simp2bi φ A A x y A y x
13 12 simp1d φ A
14 13 sseld φ a A a
15 2 simp3bi φ B B x y B y x
16 15 simp1d φ B
17 16 sseld φ b B b
18 14 17 anim12d φ a A b B a b
19 remulcl a b a b
20 18 19 syl6 φ a A b B a b
21 eleq1a a b w = a b w
22 20 21 syl6 φ a A b B w = a b w
23 22 rexlimdvv φ a A b B w = a b w
24 11 23 syl5bi φ w C w
25 24 ssrdv φ C
26 12 simp2d φ A
27 15 simp2d φ B
28 ovex a b V
29 28 isseti w w = a b
30 29 rgenw b B w w = a b
31 r19.2z B b B w w = a b b B w w = a b
32 27 30 31 sylancl φ b B w w = a b
33 rexcom4 b B w w = a b w b B w = a b
34 32 33 sylib φ w b B w = a b
35 34 ralrimivw φ a A w b B w = a b
36 r19.2z A a A w b B w = a b a A w b B w = a b
37 26 35 36 syl2anc φ a A w b B w = a b
38 rexcom4 a A w b B w = a b w a A b B w = a b
39 37 38 sylib φ w a A b B w = a b
40 n0 C w w C
41 11 exbii w w C w a A b B w = a b
42 40 41 bitri C w a A b B w = a b
43 39 42 sylibr φ C
44 suprcl A A x y A y x sup A <
45 12 44 syl φ sup A <
46 suprcl B B x y B y x sup B <
47 15 46 syl φ sup B <
48 45 47 remulcld φ sup A < sup B <
49 1 2 supmullem1 φ w C w sup A < sup B <
50 brralrspcev sup A < sup B < w C w sup A < sup B < x w C w x
51 48 49 50 syl2anc φ x w C w x
52 25 43 51 3jca φ C C x w C w x