Metamath Proof Explorer


Theorem supnub

Description: An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004)

Ref Expression
Hypotheses supmo.1 φ R Or A
supcl.2 φ x A y B ¬ x R y y A y R x z B y R z
Assertion supnub φ C A z B ¬ C R z ¬ C R sup B A R

Proof

Step Hyp Ref Expression
1 supmo.1 φ R Or A
2 supcl.2 φ x A y B ¬ x R y y A y R x z B y R z
3 1 2 suplub φ C A C R sup B A R z B C R z
4 3 expdimp φ C A C R sup B A R z B C R z
5 dfrex2 z B C R z ¬ z B ¬ C R z
6 4 5 syl6ib φ C A C R sup B A R ¬ z B ¬ C R z
7 6 con2d φ C A z B ¬ C R z ¬ C R sup B A R
8 7 expimpd φ C A z B ¬ C R z ¬ C R sup B A R