Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
supnub
Next ⟩
supex
Metamath Proof Explorer
Ascii
Unicode
Theorem
supnub
Description:
An upper bound is not less than the supremum.
(Contributed by
NM
, 13-Oct-2004)
Ref
Expression
Hypotheses
supmo.1
⊢
φ
→
R
Or
A
supcl.2
⊢
φ
→
∃
x
∈
A
∀
y
∈
B
¬
x
R
y
∧
∀
y
∈
A
y
R
x
→
∃
z
∈
B
y
R
z
Assertion
supnub
⊢
φ
→
C
∈
A
∧
∀
z
∈
B
¬
C
R
z
→
¬
C
R
sup
B
A
R
Proof
Step
Hyp
Ref
Expression
1
supmo.1
⊢
φ
→
R
Or
A
2
supcl.2
⊢
φ
→
∃
x
∈
A
∀
y
∈
B
¬
x
R
y
∧
∀
y
∈
A
y
R
x
→
∃
z
∈
B
y
R
z
3
1
2
suplub
⊢
φ
→
C
∈
A
∧
C
R
sup
B
A
R
→
∃
z
∈
B
C
R
z
4
3
expdimp
⊢
φ
∧
C
∈
A
→
C
R
sup
B
A
R
→
∃
z
∈
B
C
R
z
5
dfrex2
⊢
∃
z
∈
B
C
R
z
↔
¬
∀
z
∈
B
¬
C
R
z
6
4
5
syl6ib
⊢
φ
∧
C
∈
A
→
C
R
sup
B
A
R
→
¬
∀
z
∈
B
¬
C
R
z
7
6
con2d
⊢
φ
∧
C
∈
A
→
∀
z
∈
B
¬
C
R
z
→
¬
C
R
sup
B
A
R
8
7
expimpd
⊢
φ
→
C
∈
A
∧
∀
z
∈
B
¬
C
R
z
→
¬
C
R
sup
B
A
R