Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The support of functions
supp0
Next ⟩
suppval1
Metamath Proof Explorer
Ascii
Unicode
Theorem
supp0
Description:
The support of the empty set is the empty set.
(Contributed by
AV
, 12-Apr-2019)
Ref
Expression
Assertion
supp0
⊢
Z
∈
W
→
∅
supp
Z
=
∅
Proof
Step
Hyp
Ref
Expression
1
0ex
⊢
∅
∈
V
2
suppval
⊢
∅
∈
V
∧
Z
∈
W
→
∅
supp
Z
=
i
∈
dom
⁡
∅
|
∅
i
≠
Z
3
1
2
mpan
⊢
Z
∈
W
→
∅
supp
Z
=
i
∈
dom
⁡
∅
|
∅
i
≠
Z
4
dm0
⊢
dom
⁡
∅
=
∅
5
rabeq
⊢
dom
⁡
∅
=
∅
→
i
∈
dom
⁡
∅
|
∅
i
≠
Z
=
i
∈
∅
|
∅
i
≠
Z
6
4
5
mp1i
⊢
Z
∈
W
→
i
∈
dom
⁡
∅
|
∅
i
≠
Z
=
i
∈
∅
|
∅
i
≠
Z
7
rab0
⊢
i
∈
∅
|
∅
i
≠
Z
=
∅
8
7
a1i
⊢
Z
∈
W
→
i
∈
∅
|
∅
i
≠
Z
=
∅
9
3
6
8
3eqtrd
⊢
Z
∈
W
→
∅
supp
Z
=
∅