Metamath Proof Explorer


Theorem supp0

Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019)

Ref Expression
Assertion supp0 Z W supp Z =

Proof

Step Hyp Ref Expression
1 0ex V
2 suppval V Z W supp Z = i dom | i Z
3 1 2 mpan Z W supp Z = i dom | i Z
4 dm0 dom =
5 rabeq dom = i dom | i Z = i | i Z
6 4 5 mp1i Z W i dom | i Z = i | i Z
7 rab0 i | i Z =
8 7 a1i Z W i | i Z =
9 3 6 8 3eqtrd Z W supp Z =