Metamath Proof Explorer


Theorem supp0cosupp0

Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019)

Ref Expression
Assertion supp0cosupp0 F V G W F supp Z = F G supp Z =

Proof

Step Hyp Ref Expression
1 suppco F V G W F G supp Z = G -1 F supp Z
2 imaeq2 F supp Z = G -1 F supp Z = G -1
3 ima0 G -1 =
4 2 3 eqtrdi F supp Z = G -1 F supp Z =
5 1 4 sylan9eq F V G W F supp Z = F G supp Z =
6 5 ex F V G W F supp Z = F G supp Z =