Metamath Proof Explorer


Theorem suppeqfsuppbi

Description: If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019)

Ref Expression
Assertion suppeqfsuppbi F U Fun F G V Fun G F supp Z = G supp Z finSupp Z F finSupp Z G

Proof

Step Hyp Ref Expression
1 simprlr Z V F U Fun F G V Fun G Fun F
2 simprll Z V F U Fun F G V Fun G F U
3 simpl Z V F U Fun F G V Fun G Z V
4 funisfsupp Fun F F U Z V finSupp Z F F supp Z Fin
5 1 2 3 4 syl3anc Z V F U Fun F G V Fun G finSupp Z F F supp Z Fin
6 5 adantr Z V F U Fun F G V Fun G F supp Z = G supp Z finSupp Z F F supp Z Fin
7 simpr G V Fun G Fun G
8 7 adantr G V Fun G Z V Fun G
9 simpl G V Fun G G V
10 9 adantr G V Fun G Z V G V
11 simpr G V Fun G Z V Z V
12 funisfsupp Fun G G V Z V finSupp Z G G supp Z Fin
13 8 10 11 12 syl3anc G V Fun G Z V finSupp Z G G supp Z Fin
14 13 ex G V Fun G Z V finSupp Z G G supp Z Fin
15 14 adantl F U Fun F G V Fun G Z V finSupp Z G G supp Z Fin
16 15 impcom Z V F U Fun F G V Fun G finSupp Z G G supp Z Fin
17 eleq1 F supp Z = G supp Z F supp Z Fin G supp Z Fin
18 17 bicomd F supp Z = G supp Z G supp Z Fin F supp Z Fin
19 16 18 sylan9bb Z V F U Fun F G V Fun G F supp Z = G supp Z finSupp Z G F supp Z Fin
20 6 19 bitr4d Z V F U Fun F G V Fun G F supp Z = G supp Z finSupp Z F finSupp Z G
21 20 exp31 Z V F U Fun F G V Fun G F supp Z = G supp Z finSupp Z F finSupp Z G
22 relfsupp Rel finSupp
23 22 brrelex2i finSupp Z F Z V
24 22 brrelex2i finSupp Z G Z V
25 23 24 pm5.21ni ¬ Z V finSupp Z F finSupp Z G
26 25 2a1d ¬ Z V F U Fun F G V Fun G F supp Z = G supp Z finSupp Z F finSupp Z G
27 21 26 pm2.61i F U Fun F G V Fun G F supp Z = G supp Z finSupp Z F finSupp Z G