| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr1 |
|
| 2 |
|
fndm |
|
| 3 |
2
|
ad2antrr |
|
| 4 |
|
fndm |
|
| 5 |
4
|
ad2antlr |
|
| 6 |
1 3 5
|
3sstr4d |
|
| 7 |
6
|
adantr |
|
| 8 |
2
|
eleq2d |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
fveqeq2 |
|
| 11 |
|
fveqeq2 |
|
| 12 |
10 11
|
imbi12d |
|
| 13 |
12
|
rspcv |
|
| 14 |
9 13
|
biimtrdi |
|
| 15 |
14
|
com23 |
|
| 16 |
15
|
imp31 |
|
| 17 |
16
|
necon3d |
|
| 18 |
17
|
ex |
|
| 19 |
18
|
com23 |
|
| 20 |
19
|
3imp |
|
| 21 |
7 20
|
rabssrabd |
|
| 22 |
|
fnfun |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
|
simpl |
|
| 25 |
|
ssexg |
|
| 26 |
25
|
3adant3 |
|
| 27 |
|
fnex |
|
| 28 |
24 26 27
|
syl2an |
|
| 29 |
|
simpr3 |
|
| 30 |
|
suppval1 |
|
| 31 |
23 28 29 30
|
syl3anc |
|
| 32 |
|
fnfun |
|
| 33 |
32
|
ad2antlr |
|
| 34 |
|
simpr |
|
| 35 |
|
simp2 |
|
| 36 |
|
fnex |
|
| 37 |
34 35 36
|
syl2an |
|
| 38 |
|
suppval1 |
|
| 39 |
33 37 29 38
|
syl3anc |
|
| 40 |
31 39
|
sseq12d |
|
| 41 |
40
|
adantr |
|
| 42 |
21 41
|
mpbird |
|
| 43 |
42
|
ex |
|