Step |
Hyp |
Ref |
Expression |
1 |
|
suppsnop.f |
|
2 |
|
f1osng |
|
3 |
|
f1of |
|
4 |
2 3
|
syl |
|
5 |
4
|
3adant3 |
|
6 |
1
|
feq1i |
|
7 |
5 6
|
sylibr |
|
8 |
|
snex |
|
9 |
|
fex |
|
10 |
7 8 9
|
sylancl |
|
11 |
|
simp3 |
|
12 |
|
suppval |
|
13 |
10 11 12
|
syl2anc |
|
14 |
7
|
fdmd |
|
15 |
14
|
rabeqdv |
|
16 |
|
sneq |
|
17 |
16
|
imaeq2d |
|
18 |
17
|
neeq1d |
|
19 |
18
|
rabsnif |
|
20 |
15 19
|
eqtrdi |
|
21 |
7
|
ffnd |
|
22 |
|
snidg |
|
23 |
22
|
3ad2ant1 |
|
24 |
|
fnsnfv |
|
25 |
24
|
eqcomd |
|
26 |
21 23 25
|
syl2anc |
|
27 |
26
|
neeq1d |
|
28 |
1
|
fveq1i |
|
29 |
|
fvsng |
|
30 |
29
|
3adant3 |
|
31 |
28 30
|
eqtrid |
|
32 |
31
|
sneqd |
|
33 |
32
|
neeq1d |
|
34 |
|
sneqbg |
|
35 |
34
|
3ad2ant2 |
|
36 |
35
|
necon3abid |
|
37 |
27 33 36
|
3bitrd |
|
38 |
37
|
ifbid |
|
39 |
|
ifnot |
|
40 |
38 39
|
eqtrdi |
|
41 |
13 20 40
|
3eqtrd |
|