Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019) (Proof shortened by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppss.f | |
|
| suppss.n | |
||
| Assertion | suppss | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss.f | |
|
| 2 | suppss.n | |
|
| 3 | 1 | ffnd | |
| 4 | 3 | adantl | |
| 5 | simpll | |
|
| 6 | simplr | |
|
| 7 | elsuppfng | |
|
| 8 | 4 5 6 7 | syl3anc | |
| 9 | eldif | |
|
| 10 | 2 | adantll | |
| 11 | 9 10 | sylan2br | |
| 12 | 11 | expr | |
| 13 | 12 | necon1ad | |
| 14 | 13 | expimpd | |
| 15 | 8 14 | sylbid | |
| 16 | 15 | ssrdv | |
| 17 | 16 | ex | |
| 18 | supp0prc | |
|
| 19 | 0ss | |
|
| 20 | 18 19 | eqsstrdi | |
| 21 | 20 | a1d | |
| 22 | 17 21 | pm2.61i | |