Metamath Proof Explorer


Theorem suppss

Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019) (Proof shortened by SN, 5-Aug-2024)

Ref Expression
Hypotheses suppss.f φ F : A B
suppss.n φ k A W F k = Z
Assertion suppss φ F supp Z W

Proof

Step Hyp Ref Expression
1 suppss.f φ F : A B
2 suppss.n φ k A W F k = Z
3 1 ffnd φ F Fn A
4 3 adantl F V Z V φ F Fn A
5 simpll F V Z V φ F V
6 simplr F V Z V φ Z V
7 elsuppfng F Fn A F V Z V k supp Z F k A F k Z
8 4 5 6 7 syl3anc F V Z V φ k supp Z F k A F k Z
9 eldif k A W k A ¬ k W
10 2 adantll F V Z V φ k A W F k = Z
11 9 10 sylan2br F V Z V φ k A ¬ k W F k = Z
12 11 expr F V Z V φ k A ¬ k W F k = Z
13 12 necon1ad F V Z V φ k A F k Z k W
14 13 expimpd F V Z V φ k A F k Z k W
15 8 14 sylbid F V Z V φ k supp Z F k W
16 15 ssrdv F V Z V φ F supp Z W
17 16 ex F V Z V φ F supp Z W
18 supp0prc ¬ F V Z V F supp Z =
19 0ss W
20 18 19 eqsstrdi ¬ F V Z V F supp Z W
21 20 a1d ¬ F V Z V φ F supp Z W
22 17 21 pm2.61i φ F supp Z W