Metamath Proof Explorer


Theorem suppss2

Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 22-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppss2.n φ k A W B = Z
suppss2.a φ A V
Assertion suppss2 φ k A B supp Z W

Proof

Step Hyp Ref Expression
1 suppss2.n φ k A W B = Z
2 suppss2.a φ A V
3 eqid k A B = k A B
4 2 adantl Z V φ A V
5 simpl Z V φ Z V
6 3 4 5 mptsuppdifd Z V φ k A B supp Z = k A | B V Z
7 eldifsni B V Z B Z
8 eldif k A W k A ¬ k W
9 1 adantll Z V φ k A W B = Z
10 8 9 sylan2br Z V φ k A ¬ k W B = Z
11 10 expr Z V φ k A ¬ k W B = Z
12 11 necon1ad Z V φ k A B Z k W
13 7 12 syl5 Z V φ k A B V Z k W
14 13 3impia Z V φ k A B V Z k W
15 14 rabssdv Z V φ k A | B V Z W
16 6 15 eqsstrd Z V φ k A B supp Z W
17 16 ex Z V φ k A B supp Z W
18 id ¬ Z V ¬ Z V
19 18 intnand ¬ Z V ¬ k A B V Z V
20 supp0prc ¬ k A B V Z V k A B supp Z =
21 19 20 syl ¬ Z V k A B supp Z =
22 0ss W
23 21 22 eqsstrdi ¬ Z V k A B supp Z W
24 23 a1d ¬ Z V φ k A B supp Z W
25 17 24 pm2.61i φ k A B supp Z W