Metamath Proof Explorer


Theorem suppss2f

Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017) (Revised by AV, 1-Sep-2020)

Ref Expression
Hypotheses suppss2f.p k φ
suppss2f.a _ k A
suppss2f.w _ k W
suppss2f.n φ k A W B = Z
suppss2f.v φ A V
Assertion suppss2f φ k A B supp Z W

Proof

Step Hyp Ref Expression
1 suppss2f.p k φ
2 suppss2f.a _ k A
3 suppss2f.w _ k W
4 suppss2f.n φ k A W B = Z
5 suppss2f.v φ A V
6 nfcv _ l A
7 nfcv _ l B
8 nfcsb1v _ k l / k B
9 csbeq1a k = l B = l / k B
10 2 6 7 8 9 cbvmptf k A B = l A l / k B
11 10 oveq1i k A B supp Z = l A l / k B supp Z
12 4 sbt l k φ k A W B = Z
13 sbim l k φ k A W B = Z l k φ k A W l k B = Z
14 sban l k φ k A W l k φ l k k A W
15 1 sbf l k φ φ
16 2 3 nfdif _ k A W
17 16 clelsb1fw l k k A W l A W
18 15 17 anbi12i l k φ l k k A W φ l A W
19 14 18 bitri l k φ k A W φ l A W
20 sbsbc l k B = Z [˙l / k]˙ B = Z
21 sbceq1g l V [˙l / k]˙ B = Z l / k B = Z
22 21 elv [˙l / k]˙ B = Z l / k B = Z
23 20 22 bitri l k B = Z l / k B = Z
24 19 23 imbi12i l k φ k A W l k B = Z φ l A W l / k B = Z
25 13 24 bitri l k φ k A W B = Z φ l A W l / k B = Z
26 12 25 mpbi φ l A W l / k B = Z
27 26 5 suppss2 φ l A l / k B supp Z W
28 11 27 eqsstrid φ k A B supp Z W