Metamath Proof Explorer


Theorem suppssdm

Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019)

Ref Expression
Assertion suppssdm F supp Z dom F

Proof

Step Hyp Ref Expression
1 suppval F V Z V F supp Z = i dom F | F i Z
2 ssrab2 i dom F | F i Z dom F
3 1 2 eqsstrdi F V Z V F supp Z dom F
4 supp0prc ¬ F V Z V F supp Z =
5 0ss dom F
6 4 5 eqsstrdi ¬ F V Z V F supp Z dom F
7 3 6 pm2.61i F supp Z dom F