Metamath Proof Explorer


Theorem suppssfifsupp

Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019)

Ref Expression
Assertion suppssfifsupp G V Fun G Z W F Fin G supp Z F finSupp Z G

Proof

Step Hyp Ref Expression
1 ssfi F Fin G supp Z F G supp Z Fin
2 1 adantl G V Fun G Z W F Fin G supp Z F G supp Z Fin
3 3ancoma G V Fun G Z W Fun G G V Z W
4 3 biimpi G V Fun G Z W Fun G G V Z W
5 4 adantr G V Fun G Z W F Fin G supp Z F Fun G G V Z W
6 funisfsupp Fun G G V Z W finSupp Z G G supp Z Fin
7 5 6 syl G V Fun G Z W F Fin G supp Z F finSupp Z G G supp Z Fin
8 2 7 mpbird G V Fun G Z W F Fin G supp Z F finSupp Z G