Step |
Hyp |
Ref |
Expression |
1 |
|
suppssfv.a |
|
2 |
|
suppssfv.f |
|
3 |
|
suppssfv.v |
|
4 |
|
suppssfv.y |
|
5 |
|
eldifsni |
|
6 |
3
|
elexd |
|
7 |
6
|
ad4ant23 |
|
8 |
|
fveqeq2 |
|
9 |
2 8
|
syl5ibrcom |
|
10 |
9
|
necon3d |
|
11 |
10
|
ad2antlr |
|
12 |
11
|
imp |
|
13 |
|
eldifsn |
|
14 |
7 12 13
|
sylanbrc |
|
15 |
14
|
ex |
|
16 |
5 15
|
syl5 |
|
17 |
16
|
ss2rabdv |
|
18 |
|
eqid |
|
19 |
|
simpll |
|
20 |
|
simplr |
|
21 |
18 19 20
|
mptsuppdifd |
|
22 |
|
eqid |
|
23 |
4
|
adantl |
|
24 |
22 19 23
|
mptsuppdifd |
|
25 |
17 21 24
|
3sstr4d |
|
26 |
1
|
adantl |
|
27 |
25 26
|
sstrd |
|
28 |
27
|
ex |
|
29 |
|
mptexg |
|
30 |
|
fvex |
|
31 |
30
|
rgenw |
|
32 |
|
dmmptg |
|
33 |
31 32
|
ax-mp |
|
34 |
|
dmexg |
|
35 |
33 34
|
eqeltrrid |
|
36 |
29 35
|
impbii |
|
37 |
36
|
anbi1i |
|
38 |
|
supp0prc |
|
39 |
37 38
|
sylnbi |
|
40 |
|
0ss |
|
41 |
39 40
|
eqsstrdi |
|
42 |
41
|
a1d |
|
43 |
28 42
|
pm2.61i |
|