Metamath Proof Explorer


Theorem suppssfv

Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppssfv.a φ x D A supp Y L
suppssfv.f φ F Y = Z
suppssfv.v φ x D A V
suppssfv.y φ Y U
Assertion suppssfv φ x D F A supp Z L

Proof

Step Hyp Ref Expression
1 suppssfv.a φ x D A supp Y L
2 suppssfv.f φ F Y = Z
3 suppssfv.v φ x D A V
4 suppssfv.y φ Y U
5 eldifsni F A V Z F A Z
6 3 elexd φ x D A V
7 6 ad4ant23 D V Z V φ x D F A Z A V
8 fveqeq2 A = Y F A = Z F Y = Z
9 2 8 syl5ibrcom φ A = Y F A = Z
10 9 necon3d φ F A Z A Y
11 10 ad2antlr D V Z V φ x D F A Z A Y
12 11 imp D V Z V φ x D F A Z A Y
13 eldifsn A V Y A V A Y
14 7 12 13 sylanbrc D V Z V φ x D F A Z A V Y
15 14 ex D V Z V φ x D F A Z A V Y
16 5 15 syl5 D V Z V φ x D F A V Z A V Y
17 16 ss2rabdv D V Z V φ x D | F A V Z x D | A V Y
18 eqid x D F A = x D F A
19 simpll D V Z V φ D V
20 simplr D V Z V φ Z V
21 18 19 20 mptsuppdifd D V Z V φ x D F A supp Z = x D | F A V Z
22 eqid x D A = x D A
23 4 adantl D V Z V φ Y U
24 22 19 23 mptsuppdifd D V Z V φ x D A supp Y = x D | A V Y
25 17 21 24 3sstr4d D V Z V φ x D F A supp Z x D A supp Y
26 1 adantl D V Z V φ x D A supp Y L
27 25 26 sstrd D V Z V φ x D F A supp Z L
28 27 ex D V Z V φ x D F A supp Z L
29 mptexg D V x D F A V
30 fvex F A V
31 30 rgenw x D F A V
32 dmmptg x D F A V dom x D F A = D
33 31 32 ax-mp dom x D F A = D
34 dmexg x D F A V dom x D F A V
35 33 34 eqeltrrid x D F A V D V
36 29 35 impbii D V x D F A V
37 36 anbi1i D V Z V x D F A V Z V
38 supp0prc ¬ x D F A V Z V x D F A supp Z =
39 37 38 sylnbi ¬ D V Z V x D F A supp Z =
40 0ss L
41 39 40 eqsstrdi ¬ D V Z V x D F A supp Z L
42 41 a1d ¬ D V Z V φ x D F A supp Z L
43 28 42 pm2.61i φ x D F A supp Z L