Metamath Proof Explorer


Theorem suppssfz

Description: Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019)

Ref Expression
Hypotheses suppssfz.z φ Z V
suppssfz.f φ F B 0
suppssfz.s φ S 0
suppssfz.b φ x 0 S < x F x = Z
Assertion suppssfz φ F supp Z 0 S

Proof

Step Hyp Ref Expression
1 suppssfz.z φ Z V
2 suppssfz.f φ F B 0
3 suppssfz.s φ S 0
4 suppssfz.b φ x 0 S < x F x = Z
5 elmapfn F B 0 F Fn 0
6 2 5 syl φ F Fn 0
7 nn0ex 0 V
8 7 a1i φ 0 V
9 6 8 1 3jca φ F Fn 0 0 V Z V
10 9 adantr φ x 0 S < x F x = Z F Fn 0 0 V Z V
11 elsuppfn F Fn 0 0 V Z V n supp Z F n 0 F n Z
12 10 11 syl φ x 0 S < x F x = Z n supp Z F n 0 F n Z
13 breq2 x = n S < x S < n
14 fveqeq2 x = n F x = Z F n = Z
15 13 14 imbi12d x = n S < x F x = Z S < n F n = Z
16 15 rspcva n 0 x 0 S < x F x = Z S < n F n = Z
17 simplr φ n 0 ¬ S < n n 0
18 3 adantr φ n 0 S 0
19 18 adantr φ n 0 ¬ S < n S 0
20 nn0re n 0 n
21 nn0re S 0 S
22 3 21 syl φ S
23 lenlt n S n S ¬ S < n
24 20 22 23 syl2anr φ n 0 n S ¬ S < n
25 24 biimpar φ n 0 ¬ S < n n S
26 elfz2nn0 n 0 S n 0 S 0 n S
27 17 19 25 26 syl3anbrc φ n 0 ¬ S < n n 0 S
28 27 a1d φ n 0 ¬ S < n F n Z n 0 S
29 28 ex φ n 0 ¬ S < n F n Z n 0 S
30 eqneqall F n = Z F n Z n 0 S
31 30 a1i φ n 0 F n = Z F n Z n 0 S
32 29 31 jad φ n 0 S < n F n = Z F n Z n 0 S
33 32 com23 φ n 0 F n Z S < n F n = Z n 0 S
34 33 ex φ n 0 F n Z S < n F n = Z n 0 S
35 34 com14 S < n F n = Z n 0 F n Z φ n 0 S
36 16 35 syl n 0 x 0 S < x F x = Z n 0 F n Z φ n 0 S
37 36 ex n 0 x 0 S < x F x = Z n 0 F n Z φ n 0 S
38 37 pm2.43a n 0 x 0 S < x F x = Z F n Z φ n 0 S
39 38 com23 n 0 F n Z x 0 S < x F x = Z φ n 0 S
40 39 imp n 0 F n Z x 0 S < x F x = Z φ n 0 S
41 40 com13 φ x 0 S < x F x = Z n 0 F n Z n 0 S
42 41 imp φ x 0 S < x F x = Z n 0 F n Z n 0 S
43 12 42 sylbid φ x 0 S < x F x = Z n supp Z F n 0 S
44 43 ssrdv φ x 0 S < x F x = Z F supp Z 0 S
45 4 44 mpdan φ F supp Z 0 S