Metamath Proof Explorer


Theorem suppssnn0

Description: Show that the support of a function is contained in an half-open nonnegative integer range. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses suppssnn0.f φ F Fn 0
suppssnn0.n φ k 0 N k F k = Z
suppssnn0.1 φ N
Assertion suppssnn0 φ F supp Z 0 ..^ N

Proof

Step Hyp Ref Expression
1 suppssnn0.f φ F Fn 0
2 suppssnn0.n φ k 0 N k F k = Z
3 suppssnn0.1 φ N
4 dffn3 F Fn 0 F : 0 ran F
5 1 4 sylib φ F : 0 ran F
6 simpl φ k 0 0 ..^ N φ
7 eldifi k 0 0 ..^ N k 0
8 7 adantl φ k 0 0 ..^ N k 0
9 3 zred φ N
10 9 adantr φ k 0 0 ..^ N N
11 8 nn0red φ k 0 0 ..^ N k
12 3 adantr φ k 0 0 ..^ N N
13 simpr φ k 0 0 ..^ N k 0 0 ..^ N
14 12 13 nn0difffzod φ k 0 0 ..^ N ¬ k < N
15 10 11 14 nltled φ k 0 0 ..^ N N k
16 6 8 15 2 syl21anc φ k 0 0 ..^ N F k = Z
17 5 16 suppss φ F supp Z 0 ..^ N