Metamath Proof Explorer


Theorem suppssof1

Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppssof1.s φ A supp Y L
suppssof1.o φ v R Y O v = Z
suppssof1.a φ A : D V
suppssof1.b φ B : D R
suppssof1.d φ D W
suppssof1.y φ Y U
Assertion suppssof1 φ A O f B supp Z L

Proof

Step Hyp Ref Expression
1 suppssof1.s φ A supp Y L
2 suppssof1.o φ v R Y O v = Z
3 suppssof1.a φ A : D V
4 suppssof1.b φ B : D R
5 suppssof1.d φ D W
6 suppssof1.y φ Y U
7 3 ffnd φ A Fn D
8 4 ffnd φ B Fn D
9 inidm D D = D
10 eqidd φ x D A x = A x
11 eqidd φ x D B x = B x
12 7 8 5 5 9 10 11 offval φ A O f B = x D A x O B x
13 12 oveq1d φ A O f B supp Z = x D A x O B x supp Z
14 3 feqmptd φ A = x D A x
15 14 oveq1d φ A supp Y = x D A x supp Y
16 15 1 eqsstrrd φ x D A x supp Y L
17 fvexd φ x D A x V
18 4 ffvelrnda φ x D B x R
19 16 2 17 18 6 suppssov1 φ x D A x O B x supp Z L
20 13 19 eqsstrd φ A O f B supp Z L