Metamath Proof Explorer


Theorem suppssov2

Description: Formula building theorem for support restrictions: operator with right annihilator. (Contributed by SN, 11-Apr-2025)

Ref Expression
Hypotheses suppssov2.s φ x D B supp Y L
suppssov2.o φ v R v O Y = Z
suppssov2.a φ x D A R
suppssov2.b φ x D B V
suppssov2.y φ Y W
Assertion suppssov2 φ x D A O B supp Z L

Proof

Step Hyp Ref Expression
1 suppssov2.s φ x D B supp Y L
2 suppssov2.o φ v R v O Y = Z
3 suppssov2.a φ x D A R
4 suppssov2.b φ x D B V
5 suppssov2.y φ Y W
6 4 elexd φ x D B V
7 6 adantlr φ D V Z V x D B V
8 7 adantr φ D V Z V x D A O B V Z B V
9 oveq1 v = A v O Y = A O Y
10 9 eqeq1d v = A v O Y = Z A O Y = Z
11 2 ralrimiva φ v R v O Y = Z
12 11 ad2antrr φ D V Z V x D v R v O Y = Z
13 3 adantlr φ D V Z V x D A R
14 10 12 13 rspcdva φ D V Z V x D A O Y = Z
15 oveq2 B = Y A O B = A O Y
16 15 eqeq1d B = Y A O B = Z A O Y = Z
17 14 16 syl5ibrcom φ D V Z V x D B = Y A O B = Z
18 17 necon3d φ D V Z V x D A O B Z B Y
19 eldifsni A O B V Z A O B Z
20 18 19 impel φ D V Z V x D A O B V Z B Y
21 eldifsn B V Y B V B Y
22 8 20 21 sylanbrc φ D V Z V x D A O B V Z B V Y
23 22 ex φ D V Z V x D A O B V Z B V Y
24 23 ss2rabdv φ D V Z V x D | A O B V Z x D | B V Y
25 eqid x D A O B = x D A O B
26 simprl φ D V Z V D V
27 simprr φ D V Z V Z V
28 25 26 27 mptsuppdifd φ D V Z V x D A O B supp Z = x D | A O B V Z
29 eqid x D B = x D B
30 5 adantr φ D V Z V Y W
31 29 26 30 mptsuppdifd φ D V Z V x D B supp Y = x D | B V Y
32 24 28 31 3sstr4d φ D V Z V x D A O B supp Z x D B supp Y
33 1 adantr φ D V Z V x D B supp Y L
34 32 33 sstrd φ D V Z V x D A O B supp Z L
35 mptexg D V x D A O B V
36 ovex A O B V
37 36 rgenw x D A O B V
38 dmmptg x D A O B V dom x D A O B = D
39 37 38 ax-mp dom x D A O B = D
40 dmexg x D A O B V dom x D A O B V
41 39 40 eqeltrrid x D A O B V D V
42 35 41 impbii D V x D A O B V
43 42 anbi1i D V Z V x D A O B V Z V
44 supp0prc ¬ x D A O B V Z V x D A O B supp Z =
45 43 44 sylnbi ¬ D V Z V x D A O B supp Z =
46 0ss L
47 45 46 eqsstrdi ¬ D V Z V x D A O B supp Z L
48 47 adantl φ ¬ D V Z V x D A O B supp Z L
49 34 48 pm2.61dan φ x D A O B supp Z L