Description: Formula building theorem for support restrictions: operator with right annihilator. (Contributed by SN, 11-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppssov2.s | |
|
suppssov2.o | |
||
suppssov2.a | |
||
suppssov2.b | |
||
suppssov2.y | |
||
Assertion | suppssov2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssov2.s | |
|
2 | suppssov2.o | |
|
3 | suppssov2.a | |
|
4 | suppssov2.b | |
|
5 | suppssov2.y | |
|
6 | 4 | elexd | |
7 | 6 | adantlr | |
8 | 7 | adantr | |
9 | oveq1 | |
|
10 | 9 | eqeq1d | |
11 | 2 | ralrimiva | |
12 | 11 | ad2antrr | |
13 | 3 | adantlr | |
14 | 10 12 13 | rspcdva | |
15 | oveq2 | |
|
16 | 15 | eqeq1d | |
17 | 14 16 | syl5ibrcom | |
18 | 17 | necon3d | |
19 | eldifsni | |
|
20 | 18 19 | impel | |
21 | eldifsn | |
|
22 | 8 20 21 | sylanbrc | |
23 | 22 | ex | |
24 | 23 | ss2rabdv | |
25 | eqid | |
|
26 | simprl | |
|
27 | simprr | |
|
28 | 25 26 27 | mptsuppdifd | |
29 | eqid | |
|
30 | 5 | adantr | |
31 | 29 26 30 | mptsuppdifd | |
32 | 24 28 31 | 3sstr4d | |
33 | 1 | adantr | |
34 | 32 33 | sstrd | |
35 | mptexg | |
|
36 | ovex | |
|
37 | 36 | rgenw | |
38 | dmmptg | |
|
39 | 37 38 | ax-mp | |
40 | dmexg | |
|
41 | 39 40 | eqeltrrid | |
42 | 35 41 | impbii | |
43 | 42 | anbi1i | |
44 | supp0prc | |
|
45 | 43 44 | sylnbi | |
46 | 0ss | |
|
47 | 45 46 | eqsstrdi | |
48 | 47 | adantl | |
49 | 34 48 | pm2.61dan | |