Metamath Proof Explorer


Theorem suppssov2

Description: Formula building theorem for support restrictions: operator with right annihilator. (Contributed by SN, 11-Apr-2025)

Ref Expression
Hypotheses suppssov2.s φxDBsuppYL
suppssov2.o φvRvOY=Z
suppssov2.a φxDAR
suppssov2.b φxDBV
suppssov2.y φYW
Assertion suppssov2 φxDAOBsuppZL

Proof

Step Hyp Ref Expression
1 suppssov2.s φxDBsuppYL
2 suppssov2.o φvRvOY=Z
3 suppssov2.a φxDAR
4 suppssov2.b φxDBV
5 suppssov2.y φYW
6 4 elexd φxDBV
7 6 adantlr φDVZVxDBV
8 7 adantr φDVZVxDAOBVZBV
9 oveq1 v=AvOY=AOY
10 9 eqeq1d v=AvOY=ZAOY=Z
11 2 ralrimiva φvRvOY=Z
12 11 ad2antrr φDVZVxDvRvOY=Z
13 3 adantlr φDVZVxDAR
14 10 12 13 rspcdva φDVZVxDAOY=Z
15 oveq2 B=YAOB=AOY
16 15 eqeq1d B=YAOB=ZAOY=Z
17 14 16 syl5ibrcom φDVZVxDB=YAOB=Z
18 17 necon3d φDVZVxDAOBZBY
19 eldifsni AOBVZAOBZ
20 18 19 impel φDVZVxDAOBVZBY
21 eldifsn BVYBVBY
22 8 20 21 sylanbrc φDVZVxDAOBVZBVY
23 22 ex φDVZVxDAOBVZBVY
24 23 ss2rabdv φDVZVxD|AOBVZxD|BVY
25 eqid xDAOB=xDAOB
26 simprl φDVZVDV
27 simprr φDVZVZV
28 25 26 27 mptsuppdifd φDVZVxDAOBsuppZ=xD|AOBVZ
29 eqid xDB=xDB
30 5 adantr φDVZVYW
31 29 26 30 mptsuppdifd φDVZVxDBsuppY=xD|BVY
32 24 28 31 3sstr4d φDVZVxDAOBsuppZxDBsuppY
33 1 adantr φDVZVxDBsuppYL
34 32 33 sstrd φDVZVxDAOBsuppZL
35 mptexg DVxDAOBV
36 ovex AOBV
37 36 rgenw xDAOBV
38 dmmptg xDAOBVdomxDAOB=D
39 37 38 ax-mp domxDAOB=D
40 dmexg xDAOBVdomxDAOBV
41 39 40 eqeltrrid xDAOBVDV
42 35 41 impbii DVxDAOBV
43 42 anbi1i DVZVxDAOBVZV
44 supp0prc ¬xDAOBVZVxDAOBsuppZ=
45 43 44 sylnbi ¬DVZVxDAOBsuppZ=
46 0ss L
47 45 46 eqsstrdi ¬DVZVxDAOBsuppZL
48 47 adantl φ¬DVZVxDAOBsuppZL
49 34 48 pm2.61dan φxDAOBsuppZL