Metamath Proof Explorer


Theorem suppssr

Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppssr.f φ F : A B
suppssr.n φ F supp Z W
suppssr.a φ A V
suppssr.z φ Z U
Assertion suppssr φ X A W F X = Z

Proof

Step Hyp Ref Expression
1 suppssr.f φ F : A B
2 suppssr.n φ F supp Z W
3 suppssr.a φ A V
4 suppssr.z φ Z U
5 eldif X A W X A ¬ X W
6 fvex F X V
7 eldifsn F X V Z F X V F X Z
8 6 7 mpbiran F X V Z F X Z
9 1 ffnd φ F Fn A
10 elsuppfn F Fn A A V Z U X supp Z F X A F X Z
11 9 3 4 10 syl3anc φ X supp Z F X A F X Z
12 ibar F X V F X Z F X V F X Z
13 6 12 mp1i φ X A F X Z F X V F X Z
14 13 7 bitr4di φ X A F X Z F X V Z
15 14 pm5.32da φ X A F X Z X A F X V Z
16 11 15 bitrd φ X supp Z F X A F X V Z
17 2 sseld φ X supp Z F X W
18 16 17 sylbird φ X A F X V Z X W
19 18 expdimp φ X A F X V Z X W
20 8 19 syl5bir φ X A F X Z X W
21 20 necon1bd φ X A ¬ X W F X = Z
22 21 impr φ X A ¬ X W F X = Z
23 5 22 sylan2b φ X A W F X = Z