Metamath Proof Explorer


Theorem suppssrg

Description: A function is zero outside its support. Version of suppssr avoiding ax-rep by assuming F is a set rather than its domain A . (Contributed by SN, 5-May-2024)

Ref Expression
Hypotheses suppssrg.f φ F : A B
suppssrg.n φ F supp Z W
suppssrg.a φ F V
suppssrg.z φ Z U
Assertion suppssrg φ X A W F X = Z

Proof

Step Hyp Ref Expression
1 suppssrg.f φ F : A B
2 suppssrg.n φ F supp Z W
3 suppssrg.a φ F V
4 suppssrg.z φ Z U
5 eldif X A W X A ¬ X W
6 1 ffnd φ F Fn A
7 elsuppfng F Fn A F V Z U X supp Z F X A F X Z
8 6 3 4 7 syl3anc φ X supp Z F X A F X Z
9 2 sseld φ X supp Z F X W
10 8 9 sylbird φ X A F X Z X W
11 10 expdimp φ X A F X Z X W
12 11 necon1bd φ X A ¬ X W F X = Z
13 12 impr φ X A ¬ X W F X = Z
14 5 13 sylan2b φ X A W F X = Z