Metamath Proof Explorer


Theorem suppsssn

Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019)

Ref Expression
Hypotheses suppsssn.n φ k A k W B = Z
suppsssn.a φ A V
Assertion suppsssn φ k A B supp Z W

Proof

Step Hyp Ref Expression
1 suppsssn.n φ k A k W B = Z
2 suppsssn.a φ A V
3 eldifsn k A W k A k W
4 1 3expb φ k A k W B = Z
5 3 4 sylan2b φ k A W B = Z
6 5 2 suppss2 φ k A B supp Z W