Metamath Proof Explorer


Theorem suppun

Description: The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019)

Ref Expression
Hypothesis suppun.g φ G V
Assertion suppun φ F supp Z F G supp Z

Proof

Step Hyp Ref Expression
1 suppun.g φ G V
2 ssun1 F -1 V Z F -1 V Z G -1 V Z
3 cnvun F G -1 = F -1 G -1
4 3 imaeq1i F G -1 V Z = F -1 G -1 V Z
5 imaundir F -1 G -1 V Z = F -1 V Z G -1 V Z
6 4 5 eqtri F G -1 V Z = F -1 V Z G -1 V Z
7 2 6 sseqtrri F -1 V Z F G -1 V Z
8 7 a1i F V Z V φ F -1 V Z F G -1 V Z
9 suppimacnv F V Z V F supp Z = F -1 V Z
10 9 adantr F V Z V φ F supp Z = F -1 V Z
11 unexg F V G V F G V
12 11 adantlr F V Z V G V F G V
13 1 12 sylan2 F V Z V φ F G V
14 simplr F V Z V φ Z V
15 suppimacnv F G V Z V F G supp Z = F G -1 V Z
16 13 14 15 syl2anc F V Z V φ F G supp Z = F G -1 V Z
17 8 10 16 3sstr4d F V Z V φ F supp Z F G supp Z
18 17 ex F V Z V φ F supp Z F G supp Z
19 supp0prc ¬ F V Z V F supp Z =
20 0ss F G supp Z
21 19 20 eqsstrdi ¬ F V Z V F supp Z F G supp Z
22 21 a1d ¬ F V Z V φ F supp Z F G supp Z
23 18 22 pm2.61i φ F supp Z F G supp Z