Metamath Proof Explorer


Theorem suppval

Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019) (Revised by AV, 6-Apr-2019)

Ref Expression
Assertion suppval XVZWXsuppZ=idomX|XiZ

Proof

Step Hyp Ref Expression
1 df-supp supp=xV,zVidomx|xiz
2 1 a1i XVZWsupp=xV,zVidomx|xiz
3 dmeq x=Xdomx=domX
4 3 adantr x=Xz=Zdomx=domX
5 imaeq1 x=Xxi=Xi
6 5 adantr x=Xz=Zxi=Xi
7 sneq z=Zz=Z
8 7 adantl x=Xz=Zz=Z
9 6 8 neeq12d x=Xz=ZxizXiZ
10 4 9 rabeqbidv x=Xz=Zidomx|xiz=idomX|XiZ
11 10 adantl XVZWx=Xz=Zidomx|xiz=idomX|XiZ
12 elex XVXV
13 12 adantr XVZWXV
14 elex ZWZV
15 14 adantl XVZWZV
16 dmexg XVdomXV
17 16 adantr XVZWdomXV
18 rabexg domXVidomX|XiZV
19 17 18 syl XVZWidomX|XiZV
20 2 11 13 15 19 ovmpod XVZWXsuppZ=idomX|XiZ