Metamath Proof Explorer


Theorem suppval

Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019) (Revised by AV, 6-Apr-2019)

Ref Expression
Assertion suppval X V Z W X supp Z = i dom X | X i Z

Proof

Step Hyp Ref Expression
1 df-supp supp = x V , z V i dom x | x i z
2 1 a1i X V Z W supp = x V , z V i dom x | x i z
3 dmeq x = X dom x = dom X
4 3 adantr x = X z = Z dom x = dom X
5 imaeq1 x = X x i = X i
6 5 adantr x = X z = Z x i = X i
7 sneq z = Z z = Z
8 7 adantl x = X z = Z z = Z
9 6 8 neeq12d x = X z = Z x i z X i Z
10 4 9 rabeqbidv x = X z = Z i dom x | x i z = i dom X | X i Z
11 10 adantl X V Z W x = X z = Z i dom x | x i z = i dom X | X i Z
12 elex X V X V
13 12 adantr X V Z W X V
14 elex Z W Z V
15 14 adantl X V Z W Z V
16 dmexg X V dom X V
17 16 adantr X V Z W dom X V
18 rabexg dom X V i dom X | X i Z V
19 17 18 syl X V Z W i dom X | X i Z V
20 2 11 13 15 19 ovmpod X V Z W X supp Z = i dom X | X i Z