Metamath Proof Explorer


Theorem suppval1

Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019)

Ref Expression
Assertion suppval1 Fun X X V Z W X supp Z = i dom X | X i Z

Proof

Step Hyp Ref Expression
1 suppval X V Z W X supp Z = i dom X | X i Z
2 1 3adant1 Fun X X V Z W X supp Z = i dom X | X i Z
3 funfn Fun X X Fn dom X
4 3 biimpi Fun X X Fn dom X
5 4 3ad2ant1 Fun X X V Z W X Fn dom X
6 fnsnfv X Fn dom X i dom X X i = X i
7 5 6 sylan Fun X X V Z W i dom X X i = X i
8 7 eqcomd Fun X X V Z W i dom X X i = X i
9 8 neeq1d Fun X X V Z W i dom X X i Z X i Z
10 fvex X i V
11 sneqbg X i V X i = Z X i = Z
12 10 11 mp1i Fun X X V Z W i dom X X i = Z X i = Z
13 12 necon3bid Fun X X V Z W i dom X X i Z X i Z
14 9 13 bitrd Fun X X V Z W i dom X X i Z X i Z
15 14 rabbidva Fun X X V Z W i dom X | X i Z = i dom X | X i Z
16 2 15 eqtrd Fun X X V Z W X supp Z = i dom X | X i Z