Metamath Proof Explorer


Theorem suppvalfn

Description: The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by AV, 22-Apr-2019)

Ref Expression
Assertion suppvalfn F Fn X X V Z W F supp Z = i X | F i Z

Proof

Step Hyp Ref Expression
1 fnfun F Fn X Fun F
2 1 3ad2ant1 F Fn X X V Z W Fun F
3 fnex F Fn X X V F V
4 3 3adant3 F Fn X X V Z W F V
5 simp3 F Fn X X V Z W Z W
6 suppval1 Fun F F V Z W F supp Z = i dom F | F i Z
7 2 4 5 6 syl3anc F Fn X X V Z W F supp Z = i dom F | F i Z
8 fndm F Fn X dom F = X
9 8 3ad2ant1 F Fn X X V Z W dom F = X
10 9 rabeqdv F Fn X X V Z W i dom F | F i Z = i X | F i Z
11 7 10 eqtrd F Fn X X V Z W F supp Z = i X | F i Z