Metamath Proof Explorer


Theorem suprcl

Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Oct-2004)

Ref Expression
Assertion suprcl A A x y A y x sup A <

Proof

Step Hyp Ref Expression
1 ltso < Or
2 1 a1i A A x y A y x < Or
3 sup3 A A x y A y x x y A ¬ x < y y y < x z A y < z
4 2 3 supcl A A x y A y x sup A <