Metamath Proof Explorer


Theorem suprcld

Description: Natural deduction form of suprcl . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprcld.2 φ A
suprcld.1 φ A
suprcld.4 φ x y A y x
Assertion suprcld φ sup A <

Proof

Step Hyp Ref Expression
1 suprcld.2 φ A
2 suprcld.1 φ A
3 suprcld.4 φ x y A y x
4 suprcl A A x y A y x sup A <
5 1 2 3 4 syl3anc φ sup A <