Metamath Proof Explorer


Theorem suprclii

Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Sep-1999)

Ref Expression
Hypothesis sup3i.1 A A x y A y x
Assertion suprclii sup A <

Proof

Step Hyp Ref Expression
1 sup3i.1 A A x y A y x
2 suprcl A A x y A y x sup A <
3 1 2 ax-mp sup A <