Metamath Proof Explorer


Theorem suprclrnmpt

Description: Closure of the indexed supremum of a nonempty bounded set of reals. Range of a function in maps-to notation can be used, to express an indexed supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses suprclrnmpt.x x φ
suprclrnmpt.n φ A
suprclrnmpt.b φ x A B
suprclrnmpt.y φ y x A B y
Assertion suprclrnmpt φ sup ran x A B <

Proof

Step Hyp Ref Expression
1 suprclrnmpt.x x φ
2 suprclrnmpt.n φ A
3 suprclrnmpt.b φ x A B
4 suprclrnmpt.y φ y x A B y
5 eqid x A B = x A B
6 1 5 3 rnmptssd φ ran x A B
7 1 3 5 2 rnmptn0 φ ran x A B
8 1 4 rnmptbdd φ y z ran x A B z y
9 6 7 8 suprcld φ sup ran x A B <