Metamath Proof Explorer


Theorem suprleubii

Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Hypothesis sup3i.1 A A x y A y x
Assertion suprleubii B sup A < B z A z B

Proof

Step Hyp Ref Expression
1 sup3i.1 A A x y A y x
2 suprleub A A x y A y x B sup A < B z A z B
3 1 2 mpan B sup A < B z A z B