Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Completeness Axiom and Suprema
suprleubii
Metamath Proof Explorer
Description: The supremum of a nonempty bounded set of reals is less than or equal to
an upper bound. (Contributed by NM , 18-Mar-2005) (Revised by Mario
Carneiro , 6-Sep-2014)
Ref
Expression
Hypothesis
sup3i.1
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x
Assertion
suprleubii
⊢ B ∈ ℝ → sup A ℝ < ≤ B ↔ ∀ z ∈ A z ≤ B
Proof
Step
Hyp
Ref
Expression
1
sup3i.1
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x
2
suprleub
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x ∧ B ∈ ℝ → sup A ℝ < ≤ B ↔ ∀ z ∈ A z ≤ B
3
1 2
mpan
⊢ B ∈ ℝ → sup A ℝ < ≤ B ↔ ∀ z ∈ A z ≤ B