Metamath Proof Explorer


Theorem suprleubrnmpt

Description: The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses suprleubrnmpt.x x φ
suprleubrnmpt.a φ A
suprleubrnmpt.b φ x A B
suprleubrnmpt.e φ y x A B y
suprleubrnmpt.c φ C
Assertion suprleubrnmpt φ sup ran x A B < C x A B C

Proof

Step Hyp Ref Expression
1 suprleubrnmpt.x x φ
2 suprleubrnmpt.a φ A
3 suprleubrnmpt.b φ x A B
4 suprleubrnmpt.e φ y x A B y
5 suprleubrnmpt.c φ C
6 eqid x A B = x A B
7 1 6 3 rnmptssd φ ran x A B
8 1 3 6 2 rnmptn0 φ ran x A B
9 1 4 rnmptbdd φ y w ran x A B w y
10 suprleub ran x A B ran x A B y w ran x A B w y C sup ran x A B < C z ran x A B z C
11 7 8 9 5 10 syl31anc φ sup ran x A B < C z ran x A B z C
12 nfmpt1 _ x x A B
13 12 nfrn _ x ran x A B
14 nfv x z C
15 13 14 nfralw x z ran x A B z C
16 1 15 nfan x φ z ran x A B z C
17 simpr φ x A x A
18 6 elrnmpt1 x A B B ran x A B
19 17 3 18 syl2anc φ x A B ran x A B
20 19 adantlr φ z ran x A B z C x A B ran x A B
21 simplr φ z ran x A B z C x A z ran x A B z C
22 breq1 z = B z C B C
23 22 rspcva B ran x A B z ran x A B z C B C
24 20 21 23 syl2anc φ z ran x A B z C x A B C
25 24 ex φ z ran x A B z C x A B C
26 16 25 ralrimi φ z ran x A B z C x A B C
27 26 ex φ z ran x A B z C x A B C
28 vex z V
29 6 elrnmpt z V z ran x A B x A z = B
30 28 29 ax-mp z ran x A B x A z = B
31 30 biimpi z ran x A B x A z = B
32 31 adantl x A B C z ran x A B x A z = B
33 nfra1 x x A B C
34 rspa x A B C x A B C
35 22 biimprcd B C z = B z C
36 34 35 syl x A B C x A z = B z C
37 36 ex x A B C x A z = B z C
38 33 14 37 rexlimd x A B C x A z = B z C
39 38 adantr x A B C z ran x A B x A z = B z C
40 32 39 mpd x A B C z ran x A B z C
41 40 ralrimiva x A B C z ran x A B z C
42 41 a1i φ x A B C z ran x A B z C
43 27 42 impbid φ z ran x A B z C x A B C
44 11 43 bitrd φ sup ran x A B < C x A B C