Metamath Proof Explorer


Theorem suprlub

Description: The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Assertion suprlub A A x y A y x B B < sup A < z A B < z

Proof

Step Hyp Ref Expression
1 ltso < Or
2 1 a1i A A x y A y x < Or
3 sup3 A A x y A y x x y A ¬ x < y y y < x w A y < w
4 simp1 A A x y A y x A
5 2 3 4 suplub2 A A x y A y x B B < sup A < w A B < w
6 breq2 w = z B < w B < z
7 6 cbvrexvw w A B < w z A B < z
8 5 7 bitrdi A A x y A y x B B < sup A < z A B < z