Metamath Proof Explorer


Theorem suprlubii

Description: The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Oct-2004) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Hypothesis sup3i.1 A A x y A y x
Assertion suprlubii B B < sup A < z A B < z

Proof

Step Hyp Ref Expression
1 sup3i.1 A A x y A y x
2 suprlub A A x y A y x B B < sup A < z A B < z
3 1 2 mpan B B < sup A < z A B < z