Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Completeness Axiom and Suprema
suprlubii
Metamath Proof Explorer
Description: The supremum of a nonempty bounded set of reals is the least upper
bound. (Contributed by NM , 15-Oct-2004) (Revised by Mario Carneiro , 6-Sep-2014)
Ref
Expression
Hypothesis
sup3i.1
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x
Assertion
suprlubii
⊢ B ∈ ℝ → B < sup A ℝ < ↔ ∃ z ∈ A B < z
Proof
Step
Hyp
Ref
Expression
1
sup3i.1
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x
2
suprlub
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x ∧ B ∈ ℝ → B < sup A ℝ < ↔ ∃ z ∈ A B < z
3
1 2
mpan
⊢ B ∈ ℝ → B < sup A ℝ < ↔ ∃ z ∈ A B < z