Metamath Proof Explorer


Theorem suprnmpt

Description: An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses suprnmpt.a φ A
suprnmpt.b φ x A B
suprnmpt.bnd φ y x A B y
suprnmpt.f F = x A B
suprnmpt.c C = sup ran F <
Assertion suprnmpt φ C x A B C

Proof

Step Hyp Ref Expression
1 suprnmpt.a φ A
2 suprnmpt.b φ x A B
3 suprnmpt.bnd φ y x A B y
4 suprnmpt.f F = x A B
5 suprnmpt.c C = sup ran F <
6 2 ralrimiva φ x A B
7 4 rnmptss x A B ran F
8 6 7 syl φ ran F
9 nfv x φ
10 9 2 4 1 rnmptn0 φ ran F
11 nfv y φ
12 nfre1 y y z ran F z y
13 simp2 φ y x A B y y
14 simpl1 φ y x A B y z ran F φ
15 simpl3 φ y x A B y z ran F x A B y
16 vex z V
17 4 elrnmpt z V z ran F x A z = B
18 16 17 ax-mp z ran F x A z = B
19 18 biimpi z ran F x A z = B
20 19 adantl φ y x A B y z ran F x A z = B
21 simp3 φ x A B y x A z = B x A z = B
22 nfra1 x x A B y
23 nfre1 x x A z = B
24 9 22 23 nf3an x φ x A B y x A z = B
25 nfv x z y
26 simp3 x A B y x A z = B z = B
27 rspa x A B y x A B y
28 27 3adant3 x A B y x A z = B B y
29 26 28 eqbrtrd x A B y x A z = B z y
30 29 3exp x A B y x A z = B z y
31 30 3ad2ant2 φ x A B y x A z = B x A z = B z y
32 24 25 31 rexlimd φ x A B y x A z = B x A z = B z y
33 21 32 mpd φ x A B y x A z = B z y
34 14 15 20 33 syl3anc φ y x A B y z ran F z y
35 34 ralrimiva φ y x A B y z ran F z y
36 19.8a y z ran F z y y y z ran F z y
37 13 35 36 syl2anc φ y x A B y y y z ran F z y
38 df-rex y z ran F z y y y z ran F z y
39 37 38 sylibr φ y x A B y y z ran F z y
40 39 3exp φ y x A B y y z ran F z y
41 11 12 40 rexlimd φ y x A B y y z ran F z y
42 3 41 mpd φ y z ran F z y
43 suprcl ran F ran F y z ran F z y sup ran F <
44 8 10 42 43 syl3anc φ sup ran F <
45 5 44 eqeltrid φ C
46 8 adantr φ x A ran F
47 simpr φ x A x A
48 4 elrnmpt1 x A B B ran F
49 47 2 48 syl2anc φ x A B ran F
50 49 ne0d φ x A ran F
51 42 adantr φ x A y z ran F z y
52 suprub ran F ran F y z ran F z y B ran F B sup ran F <
53 46 50 51 49 52 syl31anc φ x A B sup ran F <
54 53 5 breqtrrdi φ x A B C
55 54 ralrimiva φ x A B C
56 45 55 jca φ C x A B C