Metamath Proof Explorer


Theorem suprnubii

Description: An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Oct-2004) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Hypothesis sup3i.1 A A x y A y x
Assertion suprnubii B ¬ B < sup A < z A ¬ B < z

Proof

Step Hyp Ref Expression
1 sup3i.1 A A x y A y x
2 suprnub A A x y A y x B ¬ B < sup A < z A ¬ B < z
3 1 2 mpan B ¬ B < sup A < z A ¬ B < z