Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Completeness Axiom and Suprema
suprnubii
Metamath Proof Explorer
Description: An upper bound is not less than the supremum of a nonempty bounded set
of reals. (Contributed by NM , 15-Oct-2004) (Revised by Mario
Carneiro , 6-Sep-2014)
Ref
Expression
Hypothesis
sup3i.1
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x
Assertion
suprnubii
⊢ B ∈ ℝ → ¬ B < sup A ℝ < ↔ ∀ z ∈ A ¬ B < z
Proof
Step
Hyp
Ref
Expression
1
sup3i.1
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x
2
suprnub
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x ∧ B ∈ ℝ → ¬ B < sup A ℝ < ↔ ∀ z ∈ A ¬ B < z
3
1 2
mpan
⊢ B ∈ ℝ → ¬ B < sup A ℝ < ↔ ∀ z ∈ A ¬ B < z