Metamath Proof Explorer


Theorem suprubd

Description: Natural deduction form of suprubd . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprubd.1 φ A
suprubd.2 φ A
suprubd.3 φ x y A y x
suprubd.4 φ B A
Assertion suprubd φ B sup A <

Proof

Step Hyp Ref Expression
1 suprubd.1 φ A
2 suprubd.2 φ A
3 suprubd.3 φ x y A y x
4 suprubd.4 φ B A
5 suprub A A x y A y x B A B sup A <
6 1 2 3 4 5 syl31anc φ B sup A <