Metamath Proof Explorer


Theorem suprubrnmpt2

Description: A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses suprubrnmpt2.x x φ
suprubrnmpt2.b φ x A B
suprubrnmpt2.l φ y x A B y
suprubrnmpt2.c φ C A
suprubrnmpt2.d φ D
suprubrnmpt2.i x = C B = D
Assertion suprubrnmpt2 φ D sup ran x A B <

Proof

Step Hyp Ref Expression
1 suprubrnmpt2.x x φ
2 suprubrnmpt2.b φ x A B
3 suprubrnmpt2.l φ y x A B y
4 suprubrnmpt2.c φ C A
5 suprubrnmpt2.d φ D
6 suprubrnmpt2.i x = C B = D
7 eqid x A B = x A B
8 1 7 2 rnmptssd φ ran x A B
9 7 6 elrnmpt1s C A D D ran x A B
10 4 5 9 syl2anc φ D ran x A B
11 10 ne0d φ ran x A B
12 1 3 rnmptbdd φ y w ran x A B w y
13 8 11 12 10 suprubd φ D sup ran x A B <