Database
REAL AND COMPLEX NUMBERS
Order sets
Supremum and infimum on the extended reals
supxr2
Next ⟩
supxrcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
supxr2
Description:
The supremum of a set of extended reals.
(Contributed by
NM
, 9-Apr-2006)
Ref
Expression
Assertion
supxr2
⊢
A
⊆
ℝ
*
∧
B
∈
ℝ
*
∧
∀
x
∈
A
x
≤
B
∧
∀
x
∈
ℝ
x
<
B
→
∃
y
∈
A
x
<
y
→
sup
A
ℝ
*
<
=
B
Proof
Step
Hyp
Ref
Expression
1
ssel2
⊢
A
⊆
ℝ
*
∧
x
∈
A
→
x
∈
ℝ
*
2
xrlenlt
⊢
x
∈
ℝ
*
∧
B
∈
ℝ
*
→
x
≤
B
↔
¬
B
<
x
3
1
2
sylan
⊢
A
⊆
ℝ
*
∧
x
∈
A
∧
B
∈
ℝ
*
→
x
≤
B
↔
¬
B
<
x
4
3
an32s
⊢
A
⊆
ℝ
*
∧
B
∈
ℝ
*
∧
x
∈
A
→
x
≤
B
↔
¬
B
<
x
5
4
ralbidva
⊢
A
⊆
ℝ
*
∧
B
∈
ℝ
*
→
∀
x
∈
A
x
≤
B
↔
∀
x
∈
A
¬
B
<
x
6
5
anbi1d
⊢
A
⊆
ℝ
*
∧
B
∈
ℝ
*
→
∀
x
∈
A
x
≤
B
∧
∀
x
∈
ℝ
x
<
B
→
∃
y
∈
A
x
<
y
↔
∀
x
∈
A
¬
B
<
x
∧
∀
x
∈
ℝ
x
<
B
→
∃
y
∈
A
x
<
y
7
6
biimpa
⊢
A
⊆
ℝ
*
∧
B
∈
ℝ
*
∧
∀
x
∈
A
x
≤
B
∧
∀
x
∈
ℝ
x
<
B
→
∃
y
∈
A
x
<
y
→
∀
x
∈
A
¬
B
<
x
∧
∀
x
∈
ℝ
x
<
B
→
∃
y
∈
A
x
<
y
8
supxr
⊢
A
⊆
ℝ
*
∧
B
∈
ℝ
*
∧
∀
x
∈
A
¬
B
<
x
∧
∀
x
∈
ℝ
x
<
B
→
∃
y
∈
A
x
<
y
→
sup
A
ℝ
*
<
=
B
9
7
8
syldan
⊢
A
⊆
ℝ
*
∧
B
∈
ℝ
*
∧
∀
x
∈
A
x
≤
B
∧
∀
x
∈
ℝ
x
<
B
→
∃
y
∈
A
x
<
y
→
sup
A
ℝ
*
<
=
B