Metamath Proof Explorer


Theorem supxr2

Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006)

Ref Expression
Assertion supxr2 A * B * x A x B x x < B y A x < y sup A * < = B

Proof

Step Hyp Ref Expression
1 ssel2 A * x A x *
2 xrlenlt x * B * x B ¬ B < x
3 1 2 sylan A * x A B * x B ¬ B < x
4 3 an32s A * B * x A x B ¬ B < x
5 4 ralbidva A * B * x A x B x A ¬ B < x
6 5 anbi1d A * B * x A x B x x < B y A x < y x A ¬ B < x x x < B y A x < y
7 6 biimpa A * B * x A x B x x < B y A x < y x A ¬ B < x x x < B y A x < y
8 supxr A * B * x A ¬ B < x x x < B y A x < y sup A * < = B
9 7 8 syldan A * B * x A x B x x < B y A x < y sup A * < = B