Metamath Proof Explorer


Theorem supxrcld

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis supxrcld.1 φ A *
Assertion supxrcld φ sup A * < *

Proof

Step Hyp Ref Expression
1 supxrcld.1 φ A *
2 supxrcl A * sup A * < *
3 1 2 syl φ sup A * < *