Metamath Proof Explorer


Theorem supxrcli

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis supxrcli.1 A *
Assertion supxrcli sup A * < *

Proof

Step Hyp Ref Expression
1 supxrcli.1 A *
2 supxrcl A * sup A * < *
3 1 2 ax-mp sup A * < *