Metamath Proof Explorer


Theorem supxrgtmnf

Description: The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006)

Ref Expression
Assertion supxrgtmnf A A −∞ < sup A * <

Proof

Step Hyp Ref Expression
1 supxrbnd A A sup A * < < +∞ sup A * <
2 1 3expia A A sup A * < < +∞ sup A * <
3 2 con3d A A ¬ sup A * < ¬ sup A * < < +∞
4 ressxr *
5 sstr A * A *
6 4 5 mpan2 A A *
7 supxrcl A * sup A * < *
8 6 7 syl A sup A * < *
9 8 adantr A A sup A * < *
10 nltpnft sup A * < * sup A * < = +∞ ¬ sup A * < < +∞
11 9 10 syl A A sup A * < = +∞ ¬ sup A * < < +∞
12 3 11 sylibrd A A ¬ sup A * < sup A * < = +∞
13 12 orrd A A sup A * < sup A * < = +∞
14 mnfltxr sup A * < sup A * < = +∞ −∞ < sup A * <
15 13 14 syl A A −∞ < sup A * <